1. Первый ряд фигур: первая фигура-кубик, вторая фигура вдвое больше первой, третья фигура вдвое больше второй.
2. Второй ряд фигур: первая фигура-кубик, вторая фигура втрое больше первой, третья фигура втрое больше второй.
3. Третий ряд фигур: первая фигура-кубик, вторая фигура впятеро больше первой, третья фигура впятеро больше второй.
Вопросы к заданию:
1. Могут ли вторые фигуры быть не столбиками, состоящими из кубиков?
2. Могут ли третьи фигуры быть не квадратами, состоящими из столбиков?
3. Сколько разныхпо виду фигур можно построить из фигур первого ряда?
4. Возьмем по 2 каждой фигуры второго ряда. Сколько различных фигур можно построить из этих фигур?
5. Возьмем по 4 каждой фигуры третьего ряда. Сколько различных фигур можно построить из таких фигур?
6. Возьмем некоторое количество кружочков. Можно ли их подсчитать с помощью построенный фигур в рядах?
Теперь мыбудем из известных уже фигур конструировать новые.
Задание 5
Цель задания: Сформировать представление о построении одних фигур с помощью других.
Пропедевтическая цель: Подготовить к пониманию формул сокращенного умножения в алгебре
Воспитательная цель: Формирование процедурное мышления с помощью математического отношения конструктивности, представленного парой «возможное-невозможное»
Содержание задания:
Построй различные фигуры из кубиков, столбиков и квадратов.
Вопросы к заданию:
1. Из каких деталей можно собрать квадрат?
2. Из каких деталей можно собрать прямоугольник?
3. Можно ли собрать квадрат из одинаковых квадратов и разных прямоугольников?
4.Можно ли собрать квадрат из разных квадратов и одинаковых прямоугольников?
5. Из каких деталей можно собрать куб?
6. Из каких деталей можно собрать ящик?
Теперь мы покажем закономерность в повторении форм хотя в повторенияхони будутменять качество.
Задание 6
Цель задания: Сформировать представление о закономерномизменении геометрической формы.
Пропедевтическая цель: Подготовить к пониманию периодичности функции
Воспитательная цель: Формирование системного мышления с помощью математического отношения системности, представленного парой «циклично-нециклично»
Содержание задания:
Построй следующий ряд фигур:
Первая фигура-кубик, вторая фигура-столбик из двух кубиков, третья фигура-квадрат из двух столбиков, четвертая фигура-куб из двух квадратов и так далее.
Вопросы к заданию:
1. На каких местах будут все время строиться кубы?
2. На каких местах будут все время строиться столбы?
3. На каких местах будут все время строиться квадраты?
4. Верно ли это для утроения?
5. Верно ли это для упятирения?
6. Верно ли это вообще для любого изменения?
Теперь мы покажем логику построения пространственных фигур.
3. Логика построения пространственных фигур.
Известно, что куб можно разделить на 2 равные части и эти части являются треугольными призмами. Программист Марк Арест показал возможность деления куба на три одинаковые четырехугольные пирамиды. Ниже мы приводим развертку такой пирамиды.
Уже из этого подхода видно что дети в детскомсаду узнают что объем пирамиды составляет треть от объема куба.
Рассмотрим конструирование правильной многоугольной призмы. Для этого необходимо сделать следующие треугольные призмы, высота которых равна 5 см, а в основании которых лежит равнобедренный треугольник со стороной 5 см. и углом при вершине, принмающим различные значения. В зависимости от этих значений будет конструироваться многоугольная призма.
Если угол при вершине основания треугольника равен то из трех таких призм собирается правильная треугольная призма. Основанием ее становится правильный треугольник с длиной стороны 5см. Эта фигура часто используется при решении задач по стереометрии.
Если угол при вершине то из четырех таких призм собирается куб. В этом примере мы видим деление куба на 4 равные части. Если угол при вершине равен то из шести таких призм собирается правильная шестиугольная призма. При угле из восьми призм собирается правильная восьмиугольная призма. Наконец для угла из 12 таких призм собирается правильная двенадцатиугольная призма. Мы видим из такого конструирование превращение многоугольной призмы в цилиндр с помощью движения.
Еще о педагогике:
Формирующий эксперимент – формирование у школьников критического отношения
к информации, полученной по телевидению
Данная экспериментальная часть работы посвящена непосредственно формированию у младших школьников умения критически воспринимать информацию, полученную по телевизору. Для эксперимента выбраны ученики 3 «Д» класса школы № 119 города Уфы. Краткая характеристика испытуемых: Андрей Демидов Общительный, ...
Сценарии физкультурно-оздоровительных мероприятий
Спортивный праздник «День игры» Цель: продолжать развивать любовь к спорту и физическим упражнениям; оптимизировать двигательную активность воспитанников. Задачи: развивать волевые качества, учить трудолюбию, взаимовыручке; активизировать мыслительную деятельность, фантазию, воображение. Предварите ...
Принцип систематичности и последовательности
Этот принцип опирается на следующие научные положения, играющие роль закономерных начал: человек только тогда обладает настоящим и действенным знанием, когда в его мозгу отражается четкая картина внешнего мира, представляющая систему взаимосвязанных понятий. Универсальным средством и главным способ ...