Систематическое изучение геометрии начинается только в средней школе, и оно происходит на символическом познавательном уровне, когда для обозначения геометрических фигур используются буквы латинского алфавита. Детский сад лишь знакомит ребенка с видовыми формами пространственных материальных тел. Интересно, что в старших классах средней школы при изучении стереометрии снова появляются пространственные материальные формы.
В старших классах при решении геометрических задач выясняется, что ученики не умеют строить сечения куба, призмы и пирамиды плоскостями поскольку у них не сформировано пространственное воображение. Именно поэтому решение задач по стереометрии всегда вызывало и продолжает вызывать большие трудности.
Совершенно очевидно, что разрезание материального куба на части с заданным срезом представляет интересную задачу на формирование пространственного воображения для мвлышей. Возникает вопрос: почему же задачи такого типа не решаются в детском саду. Ответ будет весьма простой: потому что они составляют часть системного подхода при изучении геометрии на сенсорном познавательном уровне, а образовательная информация не представлена на этом познавательном уровне ни в одной области знания, изучаемой в процессе обучения.
Известно, что в средних классах при изучении признаков равенства треугольников дети мысленно накладывают один треугольник на другой. Возникает опять вопрос: почему такое наложение не применяется в детском саду и не мысленное, а вролне непосредственное? Ответ будет тот же самый.
Больше того, не понимая того факта что геометрическое содержание неотделимо от логической формы дети осваивают в детском саду натуральные числа в виде самостоятельных логических форм, а не как величины геометрических фигур. В средней школе геометрия отделяется от алгебры и этот отрыв весьма серьезно подрывает интуитивное понимание математики.
Причина всего этого состоит в идеалистическом подходе к изучению математики, когда логические формы рассматриваются в виде самостоятельных объектов, лишенных геометрического содержания. Такой идеалистический подход превращает изучение математики в некоторую игру, в которой зная правила нужно уметь манипулировать логическими формами.
Это принципиально неверное понимание содержания математического знания. Геометрическая основа этого знания всегда существует. Именно эта основа и порождает логические формы. Другой взгляд на математическое знание превращает ее в догмат и схоластику.
Поэтому авторы данной статьи представляют базовое содержание математического образования, построенное на первой геометрической основе, которую составляют пространственные материальные тела.
Мы видим два уровня изучения геометрического конструирования. Первый уровень связан с конструированием объемных тел и при этом не происходит различия между плоскими и пространственными телами. Это означает что из кубиков собирается как квадрат так и куб хотя квадрат и представляет прямоугольный рараллелепипед с единичной высотой, а в кубе эта высота уже отлична от единицы.
На следующем уровне мы уже занимаемся только конструированием плоских материальных форм. Это означает что высота параллелепипеда практически мала и составляет 1мм. Или 2мм.
Переход от существенно объемных пространственных форм к существенно плоским происходит по мере возрастного развития ибо связан с абстрагированием. В этой статье мы ограничимся рассмотрением существенно объемных форм и логикой развития объемной формы.
Чтобы читателю не было скучно мы перемежаем текст практическими заданиями, которые уже можно делать с детьми.
Геометрическое конструирование с существенно объемными формами
Возьмем кубик с длиной ребра 3 см.-наиболее психологически удобный размер для малышей. Будем строить из кубиков разные фигуры.
Задание 1
Цель задания: Сформировать представление о величине геометрической фигуры, о равновеликости геометрических фигур и о подобии таких фигур.
Пропедевтическая цель: Подготовить к пониманию натурального числа, как логической формы, определяющей величину геометрической фигуры, к пониманию иррациональных чисел вида
.
Воспитательная цель: Формирование метрического мышления с помощью математического отношения однородности, представленного парой «одинаково-разное»
Еще о педагогике:
Диагностическое изучение
эмоциональных состояния детей до эксперимента
Диагностическое исследование подразумевает подготовительную работу по сбору информации о ребенке, его семье, уровне его подготовленности к дошкольному учреждению, об индивидуальных особенностях вашего ребенка, что ему нравиться, что нет, каковы его умения и навыки, в какой помощи он нуждается, каки ...
Определение слова, его значение и признаки слова
В современной научной литературе слово рассматривается как знак, обозначающий результат познания, мышления. Слово является основной единицей языка. Было предложено несколько сотен определений этой единицы, мы рассмотрим только некоторые из них. Д.Н. Шмелев считает, что слово – это такая единица язы ...
Постановка задачи автоматизации управления учебным процессом
Сложность управления учебным процессом заключается в том, что оценка качества управления и корректировка учебных планов, распределения нагрузки, расписания занятий возможны только после завершения определенного цикла обучения (семестра, учебного года и т. п.). Такое управление называется асинхронны ...