а + ( в + с ) = (а + в) + с.
Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно (при некотором навыке) для решения задач при помощи векторов.
Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.
Равенство векторов.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.
Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.
И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.
Действительно, пусть векторы АВ и СD – одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.
Скалярное произведение двух векторов и его свойства.
Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.
Обозначение:
а х в = IaI * IbI * cos ( а, в).
Свойства скалярного произведения:
1. а х в = в х а.
Для того, чтобы два нулевых вектора а и в были перпендикулярны, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. а х в = 0.
Выражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.
Свойства операций над векторами.
Имеют место следующие теоремы об операциях над векторами, заданными в координатной форме.
1. Пусть даны а = (ах, аy, аz) и в = ( вx, ву, вz), тогда сумма этих векторов есть вектор с, координаты которого равны сумме одноименных координат слагаемых векторов, т.е. с = а + в = (ах + вx; аy + ву; аz + вz).
Пример 1.
а = ( 3; 4; 6) и в = ( -1; 4; -3), тогда с = ( 3 + ( -1); 4 + 4; 6 + (-3)) = ( 2; 8; 3).
Еще о педагогике:
Общая характеристика учреждения
-Тип образовательного учреждения – образовательное учреждение дополнительного образования детей. -Вид образовательного учреждения – Центр дополнительного образования. -Организационно-правовая форма Учреждения – государственное учреждение. Лицензия: Серия РО № 011743, регистрационный № 4089 от 31.12 ...
Факторы дезадаптации
Дезадаптация является многофакторным процессом. Нами был предпринят анализ ведущих факторов, определяющих возникновение, развитие формы и глубину дезадаптации. В настоящее время накоплен значительный объем информации о факторах дезадаптации подростков, требуется его обобщить и систематизировать. Де ...
Семья как основной воспитывающий социальный
институт
Наибольшую защищенность от возможных негативных внешних воздействий ребенок ощущает в семье - элементарной частице человеческого общества, сложившейся и совершенствующейся в течение тысячелетий. Практика свидетельствует: ни один социальный институт, ни одна организация не способны в полной мере зам ...